

TEIKOKU Electric Mfg.Co., Ltd. (Japan

Plant & Business Headquarters Postcode 679-4395 60 Hirano, Shingu-Cho, Tatsuno-Shi, Hyogo-Ken, Japan Phone : +81-791-75-0411 Fax : +81-791-75-4190

International Business Headquarters Postcode 110-0015 6F Shitaya Bldg. 2-5, 5-chome, Higashi-Ueno, Taito-Ku, Tokyo, Japan Phone : +81-3-3841-9311 Fax : +81-3-3841-7334 E-mail: ibd-tokyo@teikokudenki.co.jp

TEIKOKU USA INC. & CHEMPUMP Div. (North & South America)

TEIKOKU USA INC.

7010 Empire Central Dr. Houston, TX 77040-3214 Phone +1-713-983-9901 +1-713-983-9919 Fax E-mail info@teikoku-usa.com Web www.teikoku-usa.com

TEIKOKU Electric GmbH (Europe)

Nuernberger Strasse 24, D-40599 Duesseldorf Germany Phone +49-211-700-6778 Fax +49-211-749-0011 E-mail info@teikoku-electric.de www.teikokupump.de Web

DALIAN TEIKOKU CANNED MOTOR

PUMP CO., LTD. (China) 中国大連三澗堡工業科技園区 Sanjianpu Science & Technology Industry Area, Dalian, China Phone +86-411-8626-9657 +86-411-8626-9292 Fax Web www.teikoku-china.com

TEIKOKU KOREA CO., LTD.

3F Hannam Tower Annex Bldg. II, #730 Hannam-dong, Yongsan-gu, Seoul, Korea +82-2-790-7012 Phone Fax +82-2-790-7014 webmaster@teikokukorea.co.kr E-mail Web www.teikokukorea.co.kr

CHEMPUMP Div.

959 Mearns Road, Warminster, PA 18974 Phone +1-215-343-6000 +1-267-486-1037 Fax E-mail chempump@chempump.com Web www.teikoku-usa.com

TEIKOKU SOUTH ASIA PTE LTD.

No.15, Joo Koon Crescent, Singapore 629015 +65-6861-4121 Phone Fax +65-6861-4521 E-mail info@teikoku-sa.com.sg Web (see US website)

TAIWAN TEIKOKU PUMP CO., LTD.

9F-1, No.5, Jinzhou st., Zhongshan District, Taipei City 104, Taiwan, R.O.C. Phone +886-2-2567-9800 Fax +886-2-2568-2670 E-mail ttpco@ms32.hinet.net Web (see US website)

ANNED MOTOR AGITATOR

Another Epoch-Making Application of Canned Motor

Here Comes "Dream Agitators" Combined with Proven Canned Motor Technology!

sente configuration

No tank-top mess because it's side/bottom entry type!

Quiet and hygienic

because it's canned motor driven!

motor.

Quiet because there is no fan to cool the

No contamination of the process, because

Perfectly suited to sanitary environments.

no external lubricant is required.

- A simple layout is yours because no maintenance space is required at the top of the tank.
- Cost saving because there are no heavy parts at the top of the tank so the tank wall thickness can be reduced.
- Higher safety is yours because less work is required at high places.

 Completel
 Well suite high-vacu
 Well suite solid-liqui tions.
 SUS 304/3 Special m are availal

Completely leak-free because it's canned motor driven!

 Completely leak free because there are no shaft seals,
 Well suited to high-temperature, high-pressure, and high-vacuum applications.

Well suited to variable combinations of gas-liquid, solid-liquid, liquid-liquid, and gas-solid-liquid reac-

SUS 304/316 is used as the standard material. Special materials such as alloy C-276 and titanium are available as options when agitating special liquids such as strong acids and alkalis.

Can be oriented in any direction through 360 degrees because it's side/bottom entry type!

- Wider choice of agitating angle, from side to bottom, is yours.
 Pinpoint target for agitation is
- yours.
 Higher speed blade rotation can be achieved thanks to the shorter shaft with higher torque resistance.
- Retrofit is available for any existing design.

Structure of canned motors

Two types of canned motors, the core of TEIKOKU's agitators, are available: the R-type, which uses a radial airgap motor similar to a general-purpose motor, and the A-type, which uses our proprietary axial air-gap motor. The different characteristics of these two motor types will allow us to meet the variety of agitation demands.

What is a canned motor?

Canned motors are leak-free motors with no shaft seals, in which the stator and the rotor are canned with thin plates (cans) and the rotor is floated in the flooded space when it turns.

What is an axial air-gap motor?

Axial air-gap motors are disc-shaped while conventional motors are cylindrical in shape. The cylindrical stator and rotor are transformed into a disc-shaped stator and rotor if they are stretched out like an umbrella.

R-type agitator

- Uses a radial air-gap (R-type) motor.
- Can be used in high-pressure applications.
- Standardized from small to large size (up to 20 kW).

A-type agitator

- An axial air-gap (A-type) motor is applied.
- Compact and very space-saving.
- Very adaptable to sanitary requirements with reduced possibility of liquid trapping.

Unique flow patterns generated by the side and bottom installation

The agitator comes standard with two types of agitator blades: propeller blades and turbine blades. Special blades for sanitary agitators, crushers and aerators are also prepared to meet the special requirements.

Propeller blades

Propeller blades have a shape that gives excellent discharge capabilities in the axial direction. They are suitable for liquid-liquid mixture, thermal unification and prevention of sedimentation of slurry in solid-liquid process when they are close in specific gravity.

Side installation (Fig. 1)

Installation position: Installed at a height of 1 to 1.5 times the outer diameter of the agitator blade from the bottom of the tank. Flow pattern: After hitting the side wall, the discharge flow is divided into a downflow and an upflow; the upflow returns from the liquid surface back to the agitator and the downflow returns from the tank bottom up to the agitator. If there are thermal transfer coils along the tank wall, arrange the space for the agitation blade so that a good flow pattern can be expected.

Bottom installation (Fig. 2)

Installation position: Installed as standard at a distance of oneguarter of the tank diameter from the center of the tank. **Flow pattern:** A circulating flow pattern generated along the tank wall by the suction of the agitator and another flow discharged by the agitator to the liquid surface will make large hydraulic circulations in the tank.

Turbine blades

Turbine blades have a shape that can produce a strong shear force and excellent radial discharge. They are suitable for emulsification in liquid-liquid systems, suspension polymerization reactions, dissolution of solids, crushing of solids, and dispersion of gases.

Side installation (Fig. 3)

Installation position: The ideal installation height for the best agitation efficiency is at one-third of the tank height from the bottom. It could be changed depending on operating conditions. Flow pattern: The fluid discharged in the radial direction along the tank wall is separated into a flow toward the liquid surface and a flow toward the bottom of the tank, and then returns to the blades from the center.

Bottom installation (Fig. 4)

Installation position: Installed as standard at a distance of onequarter of the tank diameter from the center of the tank. This installation position is suitable for preventing sedimentation, and for dissolution, and crushing. It is also well suited to the tanks with a thermal transfer coil along the inner side of the wall.

Flow pattern: The radial flow discharged along the bottom of the tank rises along the side wall, merges, and returns all the way to the blades diagonally from the top corner.

Gas-liquid agitation (Figs. 5 and 6)

Installation position: For gas-liquid agitation, both bubble dispersion and agitation can be done efficiently by blade installation at the center of the bottom of the tank and blowing the gas toward the blades. Figures 5 and 6 show the configuration of a turbine blade unit and an aerator.

Flow pattern: The flow discharged in the radial direction along the bottom of the tank ascends to the surface along the side-wall, merges at the surface center, then descends in the center vertically to return to the blades

Installation of multiple units

For tall tanks, installation of two or more units increases the agitation efficiency.

Fig. 7 Two propeller blade units

Fig. 8 Two turbine blade units

Canned Motor Agitator

Fig. 9 One aerator and one propeller blade agitator

Test facilities

TEIKOKU can assist in examination tests designed by the customers with the variety of test facilities. If such tests and examinations are in demand, please contact our nearest sales office.

Test building

(6) (7) Small SUS tank 1, small SUS tank 2

List of test tanks

No.	Tank name	Shape	Capacity	Material
(1)	Observation tank 1	ø1200 x H2000, Round bottom	2.3 m ³	Vinyl chloride, bottom plate: SUS 304
(2)	Observation tank 2	ø580 x H1160, Round bottom, w/ observation angular sub-tank	0.3 m ³	Acryl, bottom plate: SUS 304
(3)	Flat-bottomed observation tank	ø580 x H1000, Flat bottom, w/ observation angular sub-tank	0.26 m ³	Acryl, bottom plate: SUS 304
(4)	Sanitary test tank	ø780 x H1000, Flat bottom	0.47 m ³	Acryl, bottom plate: SUS 304
(5)	SUS tank	ø1500 x H2300, Round bottom	3.9 m ³	SUS304
(6)	Small SUS tank 1	ø600 x H820, Round bottom	0.2 m ³	SUS304
(7)	Small SUS tank 2	ø600 x H820, Round bottom	0.2 m ³	SUS304

•Flow visualization for propeller blades (side installation)

•Flow visualization for propeller blades (bottom installation) •Flow visualization for turbine blades (bottom installation)

0 L

Propeller blade discharge flow rate

(s)

Чiх

•Flow pattern analysis for propeller blades (side installation)

Mixing time for propeller blades

Lineup

R-type agitator

Canned motor crusher

Crushes solids deposited on the surface of pipes and tanks. (See page 13)

Aerator Excellent for distributing gases. (See page 14)

Fresh water, etc.

A-type agitator

Basic type

TEIKOKU's most popular, basic type agitator.

 $\langle \! \neg \!$: Circulation flow path

Sanitary agitator

Suitable for pharmaceutical, food and beverage, and other sanitary process needs. (See page 12)

: Circulation flow path

Sanitary agitators

Characteristics

- Suitable for pharmaceutical, food and cosmetic applications requiring sanitary operation.
- No contamination from external sources because no shaft seals are used.
- Its simple structure makes assembling/disassembling/cleaning very easy.
- Fewer components.
- Its A-type motor gives the facility a simple appearance.

A photo taken from the bottom of the tank. The agitator can be installed in the narrow space at the bottom of the tank.

One-touch disassembly.

Since the agitator can be removed simply by lifting the blades, it can be easily cleaned and provides reliable sanitary operation.

Canned motor crusher

Characteristics

- A solution for troublesome solid-removal from the bottom of the tank and the drain pipe, which used to be possible only when the process is off work.
- Takes remarkable advantages of the R-type agitator characteristics.
- Crushes the solids by rotating the cutter blades directly mounted to the motor shaft at a high speed of 1,000 to 3,600 rpm; the robust cutter blades strike the deposits to break them into pieces.
- Allows selection of the cutter blade angle, the number of blades and stages depending on the initial particle size, properties, and targeted crushed particle size.

Installation: The following illustration shows the standard installation of the crusher to crush solids efficiently.

Tank-bottom installation

In-line installation

Pit-in installation

Aerator

Characteristics

- Suitable to boost gas-liquid contact by gas dispersion, purification of wastewater (aeration), and other hydrogenation reactions.
- Fine-crushes bubbles by the strong shear force of the blades.
- Self-primes air by the suction of the blades.
- No sparger is necessary.

Installation: The following illustration shows three examples of installation: self-prime, booster feed, and multiple installation.

into the liquid by simply installing a suction pipe.

This type is used for high gas feed rates and large liquid depths.

Multiple installation This is recommended for use in dispersing gas over a wide area.

TRG that can externally monitor the overall operating conditions of a canned motor

This monitoring equipment has dramatically increased the reliability of TEIKOKU's agitators and can be installed only on R-type motors.

(TEIKOKU Rotary Guardian) Patented in Japan, the US, the U.K., Germany, Russia, France, and Italy.

Structure

Working principle

Fig. 2

As shown in Fig. 1, a pair of TRG coils wound around the stator core teeth induce a voltage of the waveform superimposed with groove high harmonic waves as shown in Fig. 2. When the phase of each coil is shifted by 180 degrees, the amplitude of the fundamental waves becomes zero and only the difference in the groove high harmonic component between coils A and B appears at the TRG coil output terminal. If the bearing wears, gap "a" increases and gap "b" decreases, the high harmonic waves of coil B significantly increase, resulting in an output voltage proportional to the amount of bearing wear as shown in Fig. 3. The voltage is measured and displayed to show the operating condition.

TRG with a terminal box for local monitoring

TRG with a panel for remote monitoring

Installation drawing

Alarms (optional)

The alarm shown in the picture on the right is available. An alarm circuit can be easily arranged to receive the output voltage of the TRG and thus the motor can be interlocked.

A TRG converter is also available to convert the signal from the TRG to 4-20 mA DC or 1-5 V DC. Please contact us for details

* Using the TRG with an inverter

When a canned motor with a TRG is driven by an inverter or when an inverter is used near the motor, the TRG indication may increase in error due to the electric noise from the inverter. Please consult us before using an inverter.

When you use our agitator for the first time: Agitation factor

Please make a selection as follows:

- (1) Obtain the agitation factor from the table on the right.
- (2) Obtain the tentative flow rate, determine the size of the driver motor from the flow rate and dynamic viscosity in reference to the agitator motor selection chart, and determine the motor type according to the operating conditions.

Tentative flow rate = volume of the liquid for agitation x specific gravity of the liquid x agitation factor ... (a)

An example of selection

Tank shape = 2000 D x 2400 H

Tank inner pressure = 0.2 MPaG

Properties of liquid for agitation

Specific gravity = 1.4

Viscosity = 2 mPa-s

Temperature = $60^{\circ}C$

600

400

40 30

Volume of liquid for agitation= 6.5 m³

Purpose of agitation = to obtain a homogeneous liquid phase

Explosion-proof structure of motor = ed2G3

Power = 3-phase x 60 Hz x 220 VAC

•Determine the size of the agitator motor

Obtain the tentative flow rate from equation (a).

- Tentative flow rate = $6.5 \times 1.4 \times 1.00 = 9.1 \text{ m}^3$
- Dynamic viscosity: $v = 2 \times 10^{-3}/1.4 \times 10^{-3} = 1.43 \times 10^{-6} \text{ m}^2/\text{s} = 1.43 \text{ mm}^3/\text{s}$
- Choose R-type or A-type, depending on the use.

The size is determined to be 150-6 from the selection chart.

Determine the type of agitator

The type is determined as ACE150-6V according to the classification on pages 21 and 22.

Agitator motor selection chart: R-type agitators

When you have experience with our agitators and wish to scale up the existing agitator

TEIKOKU's agitators are scaled up as follows:

(1) Soluble liquid-liquid agitation

The following formula applies to the relationship between the power ratio and the liquid ratio:

$P_2/P_1 = (V_2/V_1)^{0.64}...$ (b) V₁: volume of the liquid for agitation (m³) for the model plant

P1: Power of the model plant (kW)

V₂: volume of the liquid for agitation (m³) for the scaled-up agitator P₂: Power for the scaled-up agitator (kW) The power is obtained from the equation (b) to determine the agitator power and the required number of agitators.

If the required number exceeds that for the model plant, the installation position of the agitators must be considered. Please consult us.

An example of selection

In order to scale up the tank with a agitation liquid volume of 30 m³ to that of the same shape with an agitation liquid volume of 70 m³. Originally one ACE550-6V unit is used.

From equation (b), $P_2 = (70/30)^{0.64} \times 3.7 = 1.72 \times 3.7 \text{ kW}$

Consequently, two ACE550-6V units should be installed. (2) Solid suspension and emulsification agitation

- The following equation holds true: $P_2/P_1 = V_2/V_1$ (c) Follow the steps in (1).
- (3) Please consult us for solid dissolution and other scale-ups.

Calculation of agitation time

Let T be the required number of turnovers for the model plant until the completion of acitation. t = T = V/Q (min)..... (d)

t: agitation time (min)

T: required number of turnovers

- Q: circulation flow rate of the agitator (m³/min)
- V: volume of liquid (m³)

Propeller blade

$Q = k \times \pi/4 \times Di^2 \times P \times N (m^3/min)..... (e)$

k: coefficient Di: blade outer diameter (m) P: propeller blade pitch (m) N: Revolution of the agitator (r/min)

Turbine blade

 $Q = Nq \times N \times Di^{3} (m^{3}/min).... (f)$ Nq: coefficient

An example of calculation

Conditions to calculate the agitation time Volume of the liquid for agitation: 30 m³ Agitator type: AF41-436C2BM-11-B

From Table 20 on page 19, Di = 0.265 m, P = 0.25 m If T and k take a value of 3 and 0.6, respectively, based on measurements: From equation (e), $Q = 0.6 \times \pi/4 \times 0.265^2 \times$ 0.25 x 900 = 7.4 mm³/min From equation (d), $t = 3 \times 30/7.4 = 12.16$ min

Installation of the agitator

Minimum liquid level

When vigorous liquid level fluctuation occurs, be sure to install a liquid-level controller to prevent such operation with the liquid level below the minimum liquid level. Note: The minimum liquid level, L, is the distance from the liquid surface to the center of the blade.

R-type agitators

Turne	Minimum agitation level L (mm)								
туре	AF (basic type)	AS (liquid injection type)	AD (liquid-sealed type)						
336	450	350	350						
436	500	400	400						
538	550	400	400						
636	600	450	450						
736	600	450	450						

A-type agitators

Туре	Minimum agitation level L (mm)
40–6	500
75–6	600
150–6	700
220-6	800
550-6	900

Nozzle-end flange for installation

As shown in the figure on the right, design the flange so that the agitator blades project out of the extension of the tank wall.

1. Applicable to round tanks with a liquid level-to-tank diameter ratio of 1.3 to 0.8 and side installation. Please consult us for other cases. 2. Please consult us if there is a draft tube or a coil jacket in the tank. 3. SG x $V^{0.2}$ (specific gravity x dynamic viscosity to the power of 0.2) should not

exceed 3

Agitator motor selection chart: A-type agitators

Strong agitation

Solid dissolution

Heat conduction

Medium agitation

Gas absorption

Solid suspension

Contact

Emulsification (stable)

Solid suspension (difficult)

Emulsification (unstable)

3 4 2

3.29

Gas absorption (low solubility) 3.08 Crystal size adjustment

2.80

Gas cleaning

Cleaning (solid)

2.60 Extraction (liquid-liquid)

2.46 Solid suspension (easy)

2.40 Stirring (circulation only)

2.26 Gas absorption (high solubility)

2 0.5 Mixing (easy-to-mix liquids)

1.92 Weak agitation

Notes

Heat conduction (normal)

3.36 Cleaning (liquid)

1 78

1.64

1.57

1.37

1.26

1.19

1.10

1.07

1.04

1 00

0.90

Canned Motor Agitator

Instructions for selecting the type

- (1) The following are special cases. Please consult us.
- The value of SG x $v^{0.2}$ (specific gravity x dynamic viscosity to the power of 0.2) exceeds 3.
- The temperature of the agitator exceeds the allowable liquid temperature.
- Agitators having a round tank and a liquid height-to-tank diameter ratio is beyond the range of 1.3 to 0.8.
- (2) The following are special cases for agitation of slurry (solid suspension), and slurry seal agitators are recommended.
- Abrasive slurry
- Adhesive slurry
- 0.5 mm or larger slurry
- Slurry density is 30 wt% or above
- Back-flush liquid injection is extremely limited.

R-type agitators/explosion-proof structure d2G3

Specifications

Motor Frame	Frequency (Hz)	Rated Power	Rated Voltage	Rated Current	Starting Current	Max. Liquid Temp (°C) Test Pass No. (Type C	Std. Outer Dia.	Std. Blade Pitch	Circulation Flow Rate	Weight (kg)			
NO.		(KVV)	(V)	(A)	(A)	Insulation)	(mm)	(mm)	(mº/min)	AF	AS	AD	
		15	200	18	38								
336	60	1.0	220	17	42	100	ø200	190	4.30	130	135	160	
330		1.8	220	18	42	T46419				100	100	100	
	50	1.5	200	18	44		ø220	210	4.79				
		32	200	26	62						148		
126	60	0.2	220	24	68	110	ø250	200	7.07	142		185	
430		3.6	220	26	68	T40926				172	140	270	
	50	3.2	200	26	70		ø265	250	8.27				
		55	200	42	114		ø265	250	9 93				
		0.0	220	42	124	90	DLOO	200	0.00				
538	60	7.5	200	50	114		ø285	270	12.4				
		1.0	220	46	124	T39818	DLOO	210		225	231		
		8.5	220	50	124	100010	ø300	285	14.5				
	50	5.5	200	42	132		ø300	285	12.1				
		7.5	200	50	132		ø315	300	14.0				
		11	200	66	158								
	60		220	64	174								
		12.5	200	78	158	110	ø315	300	16.8				
636		10 5	220	70	174	T49572				380	385	450	
		13.5	220	/8	1/4								
	50	11	200	66	186		ø350	330	19.0				
		12.5	200	/8	186								
		15	200	88	220		ø335	320	20.3			500	
			220	88	242								
	60	18.5	200	104	220	105	050	000	00.0	470	500		
736		00	220	96	242	T40540	Ø350	330	22.9	470	528	590	
		20	220	104	242								
	50	10 5	200	90	202		ø380	350	23.8				

Dimens	ions								0	Į		
Motor Frame No.	Α	В	С	D	E	F	G	Н	J	K	L	М
336	863	395	468	202	22	430	190.7	300	300	12	23	390
436	911	420	491	216	24	480	216.3	350	316	12	25	435
538	1139	545	594	246	24	540	244.5	400	347	16	25	495
636	1270	561	709	262	24	605	280	450	367	16	25	555
736	1454	711	743	351	27	605	318.5	450	438	16	25	555

JIS5K H A RF

Κ- *φ* Ι

A-type agitators/explosion-proof structure ed2G3: w/o jacket ed2G2: w/ jacket

Specifications Motor Rated Rated Rated Starting Loc Frequency Cur Frame Power Voltage Current Current (Hz) No. (kW) (V) (A) **(A)** 3.0 0.28 220 4.6 60 40–6 50 0.25 200 3.0 5.0 60 0.6 220 5.7 9.0 75–6 50 0.52 200 5.7 9.6 60 1.8 220 12 24 150–6 50 200 12 26 1.6 220 32 60 2.4 15 220-6 34 50 2.1 200 15 60 3.7 220 24 48 550–6 50 50 3.2 200 24

Notes:

Dimensions																								
Motor Frame No	Α	Bi	С	D	E	F	G	Н	J	L	Ν	М	Т	W	U	B2	R	P ₂	S	Q	P ₁	P₃	х	Y
40-6	272	243	254	176	8.5	11.5	77.5	81.5	263	29	12	9	171	96	1/8	243 +0.8 +0.5	220	7.5	M8	33	18	1.8±0.1	186	208
75-6	308	276	288	202	10	12.5	87.5	93	268	32	12	9	179	104	1/4	276 ^{+0.8} +0.5	252	9	M8	37	18	1.8±0.1	212	236
150-6	360	324	337	232	10	15	102	111.5	278	36	12	11	191	116	1/4	324 ^{+1.1} +0.8	296	9	M10	43	20	1.8±0.±1	240	280
220-6	400	362	376	258	12	15	107	120	287	38.5	12	11	196	121	3/8	362 ^{+1.1} +0.8	328	11	M10	45	22	3.0±0.1	280	312
550-6	464	414	434	296	14	16	119	132.5	293	46.5	12	14	215	140	3/8	414 +1.1 +0.8	382	13	M12	55	24	3.0±0.1	320	364

ked	Max. Liquic Test Pass No. (T	l Temp (°C) ype C Insulation)	Std. Outer	Circulation	Max.	Weight	
ent ()	^{nt} w/o w/ jacket jacket		(mm)	(m³/min)	(mPa-s)	(kg)	
0	115	125	130	1.2	70	25	
0	T47868	T48181	140	1.1	70	20	
2 85		95	160	2.7	140	30	
2	T47869	T48182	180	2.9	140	00	
7	100	110	210	5.9	220	45	
/	T47870	T48183	220	5.5	220	40	
8	105	115	235	8.6	220	60	
5	T47871	T48184	250	8.4	220	00	
2	85	105	270	10.5	220	00	
2	T47872	T48185	296	11.1	220	00	

In the case of a vacuum tank

R-type agitators

Classification

Pr	roduct classification	M	otor	Aç	gitator	Accessory structure				
	A (1)(2)(3)(4)	— <u>(1)</u>	(2)(3)(4)(5)	— (1))(2)(3)	- (1)(2)		● : Alpł ■ : Arabic n	nabetics umerals	
Product classification		Motor				Agitator		Accessory structure		
(1) Туре	(1) Motor fram	e No.			(1) Impe	ller type	(1) Freq	uency		
F: Basic type	• • • 33	30–730			1: Prop	beller	A : 60H	Z		
D: Liquid-sealed slurry seal type	L _{9:}	special			2: Wel	ded propeller	B : 50H	Z		
S: Liquid-injection slurry seal type	Number o	of poles			3: Turb	pine type	(2) Acce	ssories		
Z: Special	Stator outer di	iameter class			4 : Pad	dle type		Circulation pipe*2	Stand	
(2) Horizontal, vertical	(2) Heat-resista	ance class			9 : Spe	cial	Blank	Standard	No	
Blank: horizontal	C: 220 (Type C	220°C)			(2) Singl	le- or multi-stage	D	Standard	Yes	
P: vertical	J : 220 (Type C	220°C, jacket: wa	ater)		1: Sing	gle stage	С	W/ cooler (water)	No	
(3) Main material classification	S : 220 (Type C	220°C, jacket: st	eam, hot wate	er, etc.)	2 : Two	stages	E	W/ cooler (water)	Yes	
1: FC	X: 400 (Special	Type C 400°C)			3: Thre	e stages	J	W/ jacket (water)	No	
2 : SC	Y: 400 (Special	Type C 400°C, jac	cket: steam, ho	ot water, etc.)	(3) Gask	tet	К	W/ jacket (water)	Yes	
4 : SUS304	(3) Nominal vo	Itage class			Blank	: Standard	S	W/ jacket (steam, hot water, etc.)	No	
5: SUS304L	2 : 200 V				V: Spir	al G	Т	W/ jacket (steam, hot water, etc.)	Yes	
6 : SUS316	4 : 400 V				Z: Spe	cial	Z Special			
7: SUS316L	9: Special									
9: Special	(4) Other*1									
(4) Nominal pressure-resistance class	No. of Starting	Thormostat	W/o	W/						
1: 1 MPa or less	boxes method	mennostat	inverter	inverter						
2 : 2 MPa		No	Blank	Р						
3 : 3 MPa	1 D. O. L.	b-contact	В	F						
4 : 4 MPa		a-contact, etc.	Х	S	-					
5 : 5 MPa	Spec	cial	Z	Z						
6 : 6 MPa	(5) TRG (TEIKC)KU Rotary Gua	ardian)							
7 : 7 MPa	Blank: None									
8 : 8 MPa	L: Terminal b	ox with meter								
9: 9 MPa or more	M: Terminal bo	x with meter + rot	ational direction	on detector						
	G: Probe only	/								
	R: Probe + ro	tational directio	on detector							
	N: Other									

*1. For the a-contact specification, other symbols are used for the starting methods. P, F and S are used only for explosion-proof inverter-driven

Material

motors.
*2. For liquid-sealed slurry seal and liquid-injection slurry seal types, the circulation method is automatically determined. Therefore, duplicate indication should be avoided, and "blank" (without the stand) or D (with the stand) shall be used.

		Stan	dard	Special material		
		SUS304	SUS316	Alloy C-276		
Impe	ller	SCS13	SCS14	Alloy C-276		
FB housing		SCS13	20214			
RB housing		SUS304	50314	Alloy C-276		
Motor flange		SUS304L	SUS316L	Alloy C-276		
Stator cap 530 or below		SUS304L	SUS316L			
Stator can	630 or over	Alloy	Alloy C-276			
Rotor can		SUS304L	SUS304L SUS316L			
Bearing		Carbon	Carbon graphite			
Sleeve		SUS316 + ha	Alloy C-276			
Other area in contact		SUS304	SU 1921 6			
with liquid		SUS316	505316	Alloy C-276		
Areas not in conta	act with liquid	SS, FC	C, etc.	SS, FC, etc.		

Note: These special materials are just examples.

A-type agitators

Classification

Product classification Motor Agitator										
	(1)(2)(3)	(4)	— • — (5)(6)		 Alphabetics Arabic numerals 					
Product classification			Motor		Agitator					
(1) Nominal design pressure class	(2) The	rmal-resis	stance class		(6) Blade type					
A: 0.2 MPa or less	C : 220	0 (Type C	220°C)*1		V: Turbine blade					
	J : 220) (Type C 2	220°C, jacket: water	r)*2	P: Propeller blade*3					
	(3) Exp	losion-pr	oof grade							
	E: ed:									
	No: N	lon-explos	sion proof							
	(4) Frar	ne numbe	er							
	40–55	50								
	(5) Pole	e No.								
	6: 6 p	oles								
*1: The explosio *2: The symbol structure is (*3: Propeller bla *3: Material	n-proof stru "J" represen ed2G2. des can be u	cture represents off Type C in used only for	ented by the symbol "G" sulation with the jacket frame numbers 220 and	" is ed20 t attache nd 550.	G3. ed to the motor and the explosion-proo					
			Standard		Special material					
			SUS316		Alloy C-276					
Impeller			SUS316		Alloy C-276					
Deter and retar can			SCS16							
Rotor and rotor can			SUS316L		Alloy C-276					
Stator can			SUS316L		Alloy C-276					
Shaft			SUS316		Alloy C-276					
Shaft surface hard-faci	ng		Stellite		—					
Bearing		Ca	rbon graphite		Carbon graphite					
Gasket			Teflon		Teflon					
Other welding parts			SUS316		Alloy C-276					
Non wetted parts		0	SS, FC, etc.		SS, FC, etc.					

Note: These special materials are just examples. In addition to them, titanium and other corrosion-resistant materials can be used. Please consult us for details.

Canned Motor Agitator)

